3,613 research outputs found

    Deciphering the properties of the medium produced in heavy ion collisions at RHIC by a pQCD analysis of quenched large p⊥p_{\perp} π0\pi^0 spectra

    Get PDF
    We discuss the question of the relevance of perturbative QCD calculations for analyzing the properties of the dense medium produced in heavy ion collisions. Up to now leading order perturbative estimates have been worked out and confronted with data for quenched large p⊥p_{\perp} hadron spectra. Some of them are giving paradoxical results, contradicting the perturbative framework and leading to speculations such as the formation of a strongly interacting quark-gluon plasma. Trying to bypass some drawbacks of these leading order analysis and without performing detailed numerical investigations, we collect evidence in favour of a consistent description of quenching and of the characteristics of the produced medium within the pQCD framework.Comment: 10 pages, 3 figure

    Inhomogeneous quadratic congruences

    Full text link
    We investigate the density of integer solutions to certain binary inhomogeneous quadratic congruences and use this information to detect almost primes on a singular del Pezzo surface of degree 6.Comment: 24 page

    Partonic Energy Loss and the Drell-Yan Process

    Full text link
    We examine the current status of the extraction of the rate of partonic energy loss in nuclei from A dependent data. The advantages and difficulties of using the Drell-Yan process to measure the energy loss of a parton traversing a cold nuclear medium are discussed. The prospects of using relatively low energy proton beams for a definitive measurement of partonic energy loss are presented.Comment: 12 pages, 2 figure

    Averages of shifted convolutions of d3(n)d_3(n)

    Get PDF
    We investigate the first and second moments of shifted convolutions of the generalised divisor function d3(n)d_3(n).Comment: 22 page

    Does parton saturation at high density explain hadron multiplicities at LHC?

    Full text link
    An addendum to our previous papers in Phys. Lett. B539 (2002) 46 and Phys. Lett. B502 (2001) 51, contributed to the CERN meeting "First data from the LHC heavy ion run", March 4, 2011Comment: 6 pages, contribution to the CERN meeting "First data from the LHC heavy ion run", March 4, 201

    Angular intricacies in hot gauge field theories

    Full text link
    It is argued that in hot gauge field theories, "Hard Thermal Loops" leading order calculations call for a definite sequence of angular averages and discontinuity (or Imaginary part prescription) operations, and run otherwise into incorrect results. The ten years old collinear singularity problem of hot QCDQCD, provides a striking illustration of that fate.Comment: 14 pages, 1 figur

    Uniaxial pressure dependencies of the phase transitions in GdMnO3_3

    Full text link
    GdMnO3_3 shows an incommensurate antiferromagnetic order below ≃42\simeq 42 K, transforms into a canted A-type antiferromagnet below ≃20\simeq 20 K, and for finite magnetic fields along the b axis ferroelectric order occurs below ≃12\simeq 12 K. From high-resolution thermal expansion measurements along all three principal axes, we determine the uniaxial pressure dependencies of the various transition temperatures and discuss their correlation to changes of the magnetic exchange couplings in RRMnO3_3 (R=La,...DyR = {\rm La, ... Dy}).Comment: 2 pages, 3 figures, submitted to JMMM (Proceedings of ICM'06, Kyoto

    Experimental investigations of synchrotron radiation at the onset of the quantum regime

    Get PDF
    The classical description of synchrotron radiation fails at large Lorentz factors, γ\gamma, for relativistic electrons crossing strong transverse magnetic fields BB. In the rest frame of the electron this field is comparable to the so-called critical field B0=4.414⋅109B_0 = 4.414\cdot10^9 T. For χ=γB/B0≃1\chi = \gamma B/B_0 \simeq 1 quantum corrections are essential for the description of synchrotron radiation to conserve energy. With electrons of energies 10-150 GeV penetrating a germanium single crystal along the axis, we have experimentally investigated the transition from the regime where classical synchrotron radiation is an adequate description, to the regime where the emission drastically changes character; not only in magnitude, but also in spectral shape. The spectrum can only be described by quantum synchrotron radiation formulas. Apart from being a test of strong-field quantum electrodynamics, the experimental results are also relevant for the design of future linear colliders where beamstrahlung - a closely related process - may limit the achievable luminosity.Comment: 11 pages, 18 figures, submitted to PR
    • …
    corecore